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Abstract. It is proven that each Lagrangian Noether symmetry—rigid or gauge—can he
easily obtained from a kind of ‘Hamiltonian generator’, which is a conserved quantity
satisfying a simple condition. This yields a procedure to construct Lagrangian gauge
transformations. It is also shown that some regularity conditions are needed in order
to assure the existence of Hamiltonian gauge generators: we exhibit an example which
has no such generators, though Noether gauge transformations can be constructed for
it. ‘We apply our method to obtain the covariant gauge transformations of the bosonic
string from its Hamiltonian constraints.

1. Intreduction

Equations of motion for constrained systems, in Hamiltonian or Lagrangian
formulation, generally exhibit terms which depend linearly on arbitrary functions of
time. Owing to this, there is a family of dynamic trajectories passing through every
admissible initial condition. This family corresponds to a unique physical motion and
its members become related by gauge transformations. Then it is convenient to find
a complete set of independent gauge transformations in order to elucidate the gauge
freedom of the theory, and therefore its physical contents, especially in regard to
quantization and BRST formalism.

Here we shall consider Hamiltonian and Lagrangian constrained formalisms built
up from a time independent singular Lagrangian§ L(q,v) defined in the tangent
(velocity) space TQ of a certain configuration space Q. Then the Hamiltonian
formalism is introduced in phase space T* Q using Dirac’s method [1].

It will be assumed that the Hessian matrix W = 82L/8v8v has ‘constant
rank’. Under this hypothesis it is possible to show (local) equivalence between the
Lagrangian and Hamiltonian formalisms, in the sense that they lead to the same
dynamic trajectories in configuration space [2].

However this equivalence has a non-trivial content when other aspects of the
formalism are taken into account. This is the case, for instance, of constraints,
degrees of freedom, presence of arbitrary functions in the dynamics, rigid symmetries

§ Indices of coordinates will be always omitted.
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and gauge transformations. The reason is that for singular Lagrangians the Legendre
transformation FL: TQ — T @Q defined by

FL(q,v) = (q,p) p=

cannot be inverted.

In particular, let us consider the case of gauge transformations. Once the
respective constraint surfaces have been determined—through Dirac’s stabilization
algorithm—both Lagrangian and Hamiltonian equations of motion exhibit the same
number of arbitrary functions of time. This number equals the number of (final) first
class primary constraints in Hamiltonian formalism. Accordingly, the same number
of independent pauge transformations is expected to describe completely the gauge
freedom of the theory 3],

If this set is known in phase space, a simpie pull-back operation through the
Legendre transformation (j.e. substitution of the momenta by their Lagrangian
expressions) leads to the correct number of independent Lagrangian gauge
transformations. But the converse operation (to start with Lagrangian gauge
transformations to obtain the Hamiltonian transformations) is not always possible
because there are functions in velocity space which are not projectable to phase
space (i.e. they cannot be expressed in terms of positions and momenta). This
‘inequivalence’ between the Lagrangian and Hamiltonian formalisms is again a clear
consequence of the Legendre transformation not being invertible.

In the study of constrained systems, obtaining gauge transformations has always
had a relevant place. Some recent results on this topic are collected in section 2, in
particular the construction of Hamiltonian gauge generators. Section 2 contains also
some notation and technical results.

The purpose of this paper is twofold:

(1) We shall establish a general result on—not necessarily projectable—Lagrangian
Noether symmetries, including either rigid or gauge symmetries: they can be always
derived from a kind of ‘Hamiltonian generator’ which fulfils a certain condition. The
problem of searching Noether transformations is thus converted into a simpler one.
This is done in section 3. The main tool is an unambiguous evolution operator, some
of whose properties are listed in section 2.

(2) As explained in section 2, the existence of a complete set of independent
Hamiltonian gauge generators can be proven under several regularity assumptions.
Some of them cannot be removed: in section 4 we present an example whose
Hamiltonian constraints are first class, which has no Hamiltonian gauge generators
but allows for a non-projectable Lagrangian Noether gauge transformation. This is
found using the method introduced in section 3.

We also apply our method to find the covariant gauge transformations of the
bosonic string from its Hamiltonian constraints. The last section is devoted to
comments and conclusions.

(L.1)

2, Preliminary results

2.1. Projectability, constraints and evolution operaiors

Let us first recall two definitions. Given a function g{q, p} in phase space, its pu.ll~
back (through the Legendre transformation FL) is the function FL*(g) in velocity
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space obtained by substituting the momenta by their Lagrangian expression

FL (9)(a,0) = g (0.3 ) - ey
v
A function f(g,v} in velocity space is called (FL-)projectable if it can be obtained
as the pull-back of a certain function g(q, p) in phase space.
The following result [4] will be needed in the next section: if v, (u = 1,...,m)
are a basis for the null vectors of the Hessian matrix W, then the necessary and
sufficient condition for a function f(g,v) in TQ to be projectable to T* @ is

C,-f=0 (u=1,...,m;) 2.2)
where I, = v, 8/3v. The basis vy, can be taken as [2]
. (2%
= (2 3p) 23

where q&lﬁ (2 =1,...,m,;) are a complete set of independent primary Hamiltonian
CONSraints.
The time-derivative operator in Lagrangian formalism is
d 8 8 e
— =v_— —+ — 2.4
at =977 %0 T 3t 24
with the acceleration a as an independent variable. Then the Euler-Lagrange
equations can be written [L], ; - = 0, where we have defined

8L dp
= e e e = — aW 2.5
[Ll:= 5 - gr=a-e @3)
with a = oL —v &'L The primary Lagrangian constraints arising from it are

xL =y, {2.6)

It is convenient in what follows to consider an evolution operator K which takes
a function g(q,p;t) in phase spacc and gives its time-derivative (K - g}(g,v;t) in
velocity space

L (89\ L 9L . (99Y , ppe ag)
K.g:=v-FL (6q)+3q FL* (3)+FL (m @7

This operator was introduced in [2). It establishes interesting connections between
Hamiltonian and Lagrangian formalisms. For instance, all the Lagrangian constraints
are obtained by applying it to the Hamiltonian constraints [5]; in particular, for the
primary constraints,

x, =K -¢). (2.8)
On the other hand the geometric formulation of K allows us to write the Euler-
Lagrange equations in an intrinsic way [6].

The operator K can be given several interesting expressions. Now we shall use

K.g=[L] FL* (i;%) + ;—t(FL'(g)) @2.9)

whose proof is direct using the chain rule.
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22 Gauge transformations

Here we quote some results from [3]. To be precise, we call dynamic symmetry
transformations those transformations which map solutions of the equations of motion
into solutions, either in Lagrangian or in Hamiltonian formalism.

The evolution operator K allows us to write, in a very compact form, the
necessary and sufficient condition for a function Gy(q,p;t) to generate, through
Poisson bracket

§f:={f,Gy} (210
an infinitesimal dynamic symmetry transformation in Hamiltonian formalism. This
condition is}

K-Gy=0 @11)
i

where V, is the surface defined by all the Lagrangian constraints in velocity space.
Equivalently, Gy is a first class function and satisfies

G

{Gu HY + 57 = prc (2.12a)

{PFC, Gy} 5 PFC (2.12b)
!

where M is the surface defined by all the Hamiltonian constraints in phase space
and PFC stands for any primary first class Hamiltonian constraint.

More particularly, we call gauge transformation a dynamic symmetry transfor-
mation which depends on arbitrary functions of time. The general form for the
(infinitesimal) generators of Hamiltonian gauge transformations can be taken as

Gula, ;1) = 3 =9)(1) Gy(a,p) 2.13)
k20

where (=%} is a kth primitive of an arbitrary function of time e.

Then, to find an effective gauge generator, the characterization (2.11) or (2.12) of
Gy as a dynamic symmetry transformation splits yielding the following constructive
algorithm, where strong equalities have been changed to normal equalities [3]:

G, = PFC (2.14a)

(G, H} + Gy 4y = PFC (2.14b)

{pFCc, G, } = PFC. (2.14c)
M,

It is noticed, therefore, that though there may be second class constraints, the
generators of Hamiltonian gauge transformations are built up of first class constraints,
and, according to (2.14a), are ‘headed’ by a primary constraint.

tf = 0 means f = 0 on M (Dirac’s weak equality). f % 0 means f < 0and df = 0 (Dirac’s strong

equality).
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Other authors have considered similar generators of the form (2.13) when there
are no second class constraints [7-9]; they have used the derivatives of ¢ rather
than its primitives, and have arrived to a restricted form of (2.14). There is also
an approach where the Lagrange’s multipliers of the constraints are considered as
dynamic variables [10]. A functional approach, more general, is also possible; see for
instance [11, 12].

The question arises as to the existence of a basis of primary first class Hamiltonian
constraints such that the preceding algorithm can be carried out. Concerning this,
a theorem has been recently proven [13] which, under some additional regularity
conditions (namely, the constancy of the rank of Poisson brackets among constraints
and the non-appearance of ineffective constraints), cstablishes the existence of a
complete set of independent Hamiltonian gauge generators of the form above. Its
number, therefore, equals the number of (final) first class primary constraints. On
the other hand, their pull-back constitutes a complete set of Lagrangian gauge
transformations.

3. Noether’s transformations

3.1. Construction of Noether's transformations

We consider an infinitesimal transformation §¢(q, v;¢) in velocity space TQ, with a
possible functional dependence on arbitrary functions of time. When &L is a total
derivative (i.e., the action is invariant up to boundary terms), Noether’s theorem
guarantees that §q maps solutions into solutions. Such a éq is called a Noether
transformation, and a conserved quantity arises from it [14-19]. Some recent papers
dealing with geometric aspects of Nocther’s theorem are [20,21]. So let us consider

dF
SL=—. (3.1)

This can be equivalently written as

{L]-6q+%(—f-=0 (3.2)

with the conserved quantity G = (8L/0v)éq— F.
Since the acceleration a appears linearly in (3.2), its coefficient must vanish [22]
oG

By contraction with the «, this implies ', - G =0 for u = 1,...,m;. We conclude
from (2.2) that G is a projectable function

G = FL*(Gy) (3.9)

for a certain function Gy(g,p;t) in phase space, determined up to primary
Hamiltonian constraints. Then the relation (3.3) also reads

W (6q —FL* (9911.)) =0.
dp
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Therefore the term in parentheses is a null vector of W. So, using the basis (2.3),
there exist uniquely defined functions r#(q,v;t) (. = 1,...,m,) such that

_are [ OGy u
bg=FL ( ap )-l—r Yu 3.5
which can also be written more symmetrically as

5q=FL*{q,Gy} + r* FL*{q, ¢%}. (3.6)

Introducing (3.5} into (3.2), we obtain

e (8GuY L dFL*(Gy) _
o o (558) + )+ 25450 <o

which, using expression (2.9), definition (2.5) and the definition of the primary
Lagrangian constraints (2.6), becomes

K. Gy+rixt =0. 3.7

Then, if we define V| as the primary Lagrangian constraint surface, (3.7) can be
written without any reference to the functions r* as

K-Gyz0. 3.8)
1

Thus, starting from a Noether transformation (3.2), we have obtained a neat
characterisation (3.8) of a function Gy{g, p;t) which carries all the information of
the Noether transformation. Notice that addition of primary Hamiltonian constraints
to Gy does not modify (3.8).

Conversely, we can reconstruct ég from (3.8), in order to satisfy (3.2), as follows.
First the functions r# are determined in order to satisfy (3.7). Indeed, they are
determined up to certain combinations of primary Lagrangian constraints; additional
underdetermination appears when the primary Lagrangian constraints X}z are not
independent. Then define 6¢ through (3.6). The function G is also recovered as
G = FL*(Gy). With these definitions (3.2) is automaticaly fulfilled.

We have proven, therefore:

Theorem. Every Lagrangian Noether infinitesimal transformation éq(g¢,v;t) can
be obtained through (3.6) from a function Gy(g,p;t) satisfying K - Gy = 0.
1

Conversely, any function Gy(q,p;t) satisfying this relation generates in the same
way a Lagrangian Noether transformation.

This Gy is the ‘Hamiltonian generator in the sense of (3.6)’ for 6¢ which we were
looking for. Notice, however, that such Gy is not necessarily a Hamiltonian gauge
generator, since in general it does not satisfy (2.11).

For the sake of completeness we notice that the transformations of the momenta—
as functions p = 8L /8v—can be shown to be

§ = FL* {p, Gy} + r* FL"{p, ¢4} ~ [L] 06/ BV (3.9)

in full accordance with (3.6) when the equations of motion are taken into account.
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3.2. Projectability of Noether's ransformations

Now we consider a given function Gy satisfying (3.8). Two different cases can appear:

(1) The functions r* determined by (3.7) are projectable: r# = FL*(rj)-
Equivalently, 6q i projectable. Then, if we redefine Gy = Gy + quS s equation
(3.8) becomes

K -G =0
K-Gy=0

This is the case studied in [23]. The infinitesimal transformation reads
6g = FL*{q,Gy}-

Now Gy is also a generator of infinitesimal dynamic symmetry transformations in
Hamiltonian formalism, since it satisfies (2.11).

(2) The functions r# determined by (3.7) are not projectable. This is a new
case not considered before. Now we have a Noether transformation which is not the
pull-back of a Hamiltonian symmetry transformation. In the next section we present
an example of this kind of transformation.

It is worth noticing that our characterization (3.7) can be weakened by substituting
normal equalities for Dirac’s strong equalities. Our results hold in this more general
situation after changing normal equalities to strong equalitics in equations as (3.6),

(3.1) or (3.2).

3.3. Lagrangian gauge transformations

Finally, let us consider the particular case of Noether gauge transformations. If a
‘generator’ Gy of the form (2.13) is proposed, then condition (3.8) can be analysed
to obtain a recursive algorithm in the same way that (2.11) leads to (2.14). We have

K- Gy=eGh+ 3 €DK -Gy + EL(GE™))

E20
so the arbitrariness of ¢ implies the recursive relations
FL*(GY) =0 {3.10a)
1
EL*(GEtY) =-K- GE. (3.100)
1

This also shows that Gy is made up of Hamiltonian constraints, See also [24] for

another construction of Lagranglan gauge transformations, in which the null vectors
7, play a role similar to that in this paper.

4. An example of a Lagrangian gauge transformation without a Hamiltonian
counterpart

Here we discuss in detail a simple model which has no Hamiltonian gauge generators
but exhibits, at the Lagrangian level, Noether gauge transformationst.

t A more physical example exhibiting similar features is provided by the second-order Lagrangian describing
a relativistic particle with curvature.
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We start with the singular Lagrangian
L=-1y-(3+ Py @.1)
Configuration space is described by the scalar coordinates o and 3, assumed to take
non-zero values, and the vector coordinates = and y, belonging to a vector space with

an indefinite scalar product (Minkowski space, for instance).
The Hamiltonian analysis of this Lagrangian leads to the primary constraints

Pa =0 pg=~0
which are first class. The Hamiltonian can be taken as
H= —ap, 'py - JBp:c ‘Y.
Stability of the primary constraints gives
paz{pa’H}"_"p::'py::wl Zig={P’@aH}=P,;'y=:u')2
where 1, and vy, are the secondary constraints. Observe that
{¥1, %2} = -pi.
Stability of the secondary constraints gives
151={11’1’H}=13P;23 ¢2={¢2,H}=—0P§:
which lead to the tertiary constraint
3 1= pl.

The algorithm ends at this stage. Due to the constraint 1);, all five constraints of
the model are finally first class.

Notice that the rank of the matrix of Poisson brackets among the constraints is
not constant. Therefore the existence theorem for Hamiltonian gauge transformations
of [13] cannot be applied. In fact we are going to show that no Hamiltonian gauge
generators exist in this case. Therefore, the hypothesis in [13] cannot be removed
from the assumptions of that existence theorem.

Let us look for a generator of the form (2.13). The more general choice for Gy
is

Gy = fpr. +9pp

with f and g functions to be determined with the only restriction that they cannot be
constraints (otherwise, Gy would be ineffective, Gy 5 0). Then (2.14b) for k =1
7

leads to

G,y =-fiy— g+ f'pa + 9'Pg
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with f’ and g’ functions to be determined. Now condition (2.14c) imposes

-t?i = constraint ?i = constraint
da as

dg , dg ,
'éz = constraint :9? = constraint.

Next we can construct

G, =-{G,, H} + rFC
= (f8—ga)y— (o fy ) + B{f. ¥} + F)y
~(elg, v} + Blo. v} + 9 )y + f'pa + 0P

and condition {2.14¢) leads to

g3 0 Fs ﬁ 0

M;
which implies that g and f are constraints. Then the generator Gy becomes
ineffective and does not generate any transformation of the solutions.

However, this model admits—necessarily non-projectable-—~Noecther gauge trans-
formations, which can be obtained from the resuits of section 3. Let us look, for
instance, for a Noether transformation ‘generated’ by a combination of all but the
primary constraints:

Gu = fiy + gty + ks @.2)
Then we compute, using (2.8)
K-Gu=(K-f)xi+ (K -g)x;+ (K-h-FL (ag-Ff))x;

where x; = FL"(1;) are the Lagrangian constraints. Therefore K - Gy & 0is

equivalent to
K -h=FL"(ag-3f).

It is just a matter of using a function A such that K- h is projectable. In this case, this
means that K - h does not depend on & nor B; in other words, h is independent of
o and 8. Then f and g are in a simple relation, and a Noether transformation (3.6)
is obtained with r! = —K - f and 2 = — K . g. More particularly, two independent
gauge transformations can be obtained from the following ‘generators’, which contain
the arbitrary functions of time ¢; and e;:

(i) Gy = —((t)/B)¥ + €(t)v3. The corresponding Noether transformation
D

6z=-—(y+£)-~2c—?ﬂ b= (& /8)

ﬂyz——y 68 = 0.
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(i) Gy = (&(t)/a)¥, + €(1)1p;. Now the transformation is

bx = —Ely - 3’:‘3—9 da=0
a o
by =10 68 =—(&/a) .

Both transformations fulfil (3.2) with the corresponding G = FL*{ Gy).
Notice that tha simplest form of a gauge transformation is obtained by chosing
h=0, f =—ae(t) and g = —Be(t). Then
Gy = () H = —c(ap, + Bp)

which satisfies
K-Gu+(ca)x+ (eB)x2 =0,
The corresponding Noether transformation is
bz = ex ba = (ea) by = ey 58 = ().

Indeed, it can be proven in general that if the Hamiltonian H is a secondary constraint
then Gy = e(t) H ‘generates in the sense of (3.6)" a Noether transformation.

We have shown therefore that this model exhibits non-trivial Lagrangian Noether
gauge transformations, whereas no Hamiltonian gauge generators exist.

5. Example: the bosonic string
The Lagrangian density of the bosonic string is [25, 26]

,,‘_g o
L= 59 ﬂaa:c’“aﬁmu

where g = gy911 — 954, Using its Hamiltonian constraints and the algorithm described
in section 2, one can find 8 Hamiltonian gauge generator Gy which yields its canonical
gauge transformations [23]. But these tranformations, when read in Lagrangian
formalism, do not have the well known covariant form

bzt = %G " (5.1a)
6gqﬁ = Agaﬂ + 613’1901,@ + aae‘ygwﬂ + aﬂﬁ.rga‘)‘ (5.1b)

which is not projectable. This transformation can be obtained from the Hamiltonian
transformation through a change of gauge parameters [23].

The procedure we have introduced in this paper can be applied to obtain directly
the covariant gauge transformations from the Hamiltonian constraints, as we are
going to sketch.

The Hamiltonian constraints are: the primary constraints, the momenta =*%
of g, g, which are equivalent to

1
dw = T + g ™ + g

¢H=2\/—

—g
(g™ + gy =")
G

1
o = ™ ((20%4 = gwgn) ™" + 29501 7")
00
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and the secondary constraints, which can be written as
H=%(p2+:c’2) T=p 2.

All them are related by ¢y, =0, ¢y = H, and ¢, = T. The Hamiltonian density
is also a secondary constraint

H=-YI9y 407
n In

From the primary Hamiltonian constraints we obtain the kernel +,;(o,0') of
W(o,o’), which is given by the T, ;(0) = 8/84,4; equivalently we can use

d a 8
Fy = (9 —+ 95— + 915 )
w magw o1 agm 11 agu
2/~ a a8
Fy= g (901 + )

; L2 EY R
o0 gy gy

1 ( s ;] ;]
Fp=—1{(2g -gg)—~.—-+299—.—)-
T gw ( U1 W11 agm 01511 ag“

Finally, the primary Lagrangian constraints are the K - #*8(¢), which are not
independent. We will use instead the following constraints: K ¢4 (o) = FL*(H(o))
and K ¢r(o)=FL*(T(c)), whereas K . ¢ is identically zero.

As in the previous example, we can look for a ‘generator’ Gy made up of
secondary constraints with arbitrary parameters. Let us consider the most general
Gy, which can be taken as Gy = [do ("M 4 €!T). It satisfies K - Gy =
— fdo (ryFL*(H) + rFL*(T)) = 0, which determines

1

rylo) = (Eoﬂ). - 260’-\/—?_%?"9"1— + ¢! (ﬂ)’ - El'_@

91 M n I
. 2 _ '
rp(0) = — (é’&l&) F&II (&) +'du
an 91 L2 n

The function ry corresponding to the vanishing Lagrangian constraint i - ¢y,
remains arbitrary, and we can take advantage of this to introduce a new gauge
parameter (arbitrary function) A.

Once ry, is fixed, we use (3.6) to determine the gauge transformation. It turns
out that its most simple form is achieved when we take

1 . .
rw =4+ ™ (€"go0 + 2¢°g00 + €' gl + 2¢' gy )

which yields (5.1).
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6. Conclusions

In this paper we have obtained a neat characterization for Noether transformations
(of Lagrangian formalism): they are ‘generated’ by a function Gy(gq,p;t) (of
Hamiltonian formalism) which satisfies K - Gy = 0. This result is completely

1
general: it includes both the cases of gauge and rigid transformations as well as
the projectable and the non-projectable transformations. Owing to the dynamic
contents of the operator K, Gy is a constant of motion. The case of gauge
transformations corresponds to a G made up by arbitrary functions of time and
Hamiltonian constraints.

The case of non-projectable Noether transformations is especially relevant because
they cannot have an associated transformation in phase space. The example in
section 4 shows that there are cases for which no Hamiltonian gauge generators exist,
even though the dynamics contains arbitrary functions. This fact is compatible with
the existence of Noether gauge transformations in velocity space. The same example
proves that the hypothesis of constant rank of the Poisson bracket among constraints
cannot be removed from the theorem of existence of a complete set of independent
gauge transformations in phase space [13]. On the other hand, as shown in the second
example, our procedure allows us to obtain the covariant gauge transformations even
when this is not possible within the Hamiltonian framework.
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