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Abstract. It is pmen that each Lagrangian Nwther symmetry-rigid or gauge-n be 
easily obtained from a kind of ‘Hamiltonian generator’, which is a wnserved quantily 
salisfying a simple mndition. ?his yields a procedure to mnstmct Lagrangian gauge 
mnsfonnations. It is also shown that wme regularity mnditions are needed in order 
to assure lhe existence of Hamiltonian gauge generators: we exhibit an example which 
has no such generalors, though Noether gauge transformations can be wnstmcted for 
il. We apply our method to obtain the mvariant gauge transformations of the bsonic 
string from its Hamiltonian wnstraints. 

1. Introduction 

Equations of motion for constrained systems, in Hamiltonian or Lagrangian 
formulation, generally exhibit terms which depend linearly on arbitrary functions of 
time. Owing to this, there is a family of dynamic trajectories passing through every 
admissible initial condition. This family corresponds to a unique physical motion and 
its members become related by gauge transformations. Then it is convenient to find 
a complete set of independent gauge Uansformations in order to elucidate the gauge 
freedom of the theory, and therefore its physical contents, especially in regard to 
quantization and ERST formalism. 

Here we shall consider Hamiltonian and Lagrangian constrained formalisms built 
up from a time independent singular Lagrangians L(q,u)  defined in the tangent 
(velocity) space TQ of a certain configuration space Q. Then the Hamiltonian 
formalism is introduced in phase space T’Q using Dirac’s method [l]. 

It will be assumed that the Hessian matrix W = a*L/auau has ‘constant 
rank’. Under this hypothesis it is possible to show (local) equivalence between the 
Lagrangian and Hamiltonian formalisms, in the sense that they lead to the same 
dynamic trajectories in configuration space [Z]. 

However this equivalence has a non-trivial content when other aspects of the 
formalism are taken into account. This is the case, for instance, of constraints, 
degrees of freedom, presence of arbitrary functions in the dynamics, rigid symmetries 

5 Indices of mordinates will be always omitted. 
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6358 X Grcicia and J M Pons 

and gauge transformations. The reason is that for singular Lagrangians the Legendre 
transformation FL:TQ - F Q  defined by 

(1.1) 
I a L  

av W q ,  V) = (q,Pj) P = - 
cannot be inverted. 

Once the 
respective constraint surfaces have been determined-through Dirac’s stabilization 
algorithm-both Lagrangian and Hamiltonian equations of motion exhibit the same 
number of arbitrary functions of time. ?his number equals the number of (final) first 
class primary constraints in Hamiltonian formalism. Accordingly, the same number 
of independent gauge transformations is expected to describe completely the gauge 

If this set is known in phase space, a simple pull-back operation through the 
Legendre transformation (i.e. substitution of the momenta by their Lagrangian 
expressions) leads to the correct number of independent Lagrangian gauge 
transformations. But the converse operation (to start with Lagrangian gauge 
transformations to obtain the Hamiltonian transformations) is not always possible 
because there are functions in velocity space which are not projectable to phase 
space (i.e. they cannot be expressed in terms of positions and momenta). This 
‘inequivalence’ between the Lagrangian and Hamiltonian formalisms is again a clear 
consequence of the Legendre transformation not being invertible. 

In the study of constrained systems, obtaining gauge transformations has always 
had a relevant place. Some recent results on this topic are collected in section 2, in 
particular the construction of Hamiltonian gauge ~~~ generators. Section 2 contains also 
some notation and technical results. 

In particular, let us consider the case of gauge transformations. 

freedcm the t h ~ ~  > L A  r31. 

The purpose of this paper is twofold: 
(1) We shall establish a general result on-not necessarily projectable-Lagrangian 

Noether symmetries, including either rigid or gauge symmetries: they can be always 
derived from a kind of ‘Hamiltonian generator’ which fulfils a certain condition. The 
problem of searching Noether transformations is thus converted into a simpler one. 
This is done in section 3. The main tool is an unambiguous evolution operator, some 
of whose properties are listed in section 2. 

(2) AF explained in section 2, the existence of a complete set of independent 
Hamiltonian gauge generators can be proven under several regularity assumptions. 
Some of them cannot be removed: in section 4 we present an example whose 
Hamiltonian constraints are first class, which has no Hamiltonian gauge generators 
but allows for a non-projectabie iagrangian Noether gauge transformation. mis is 
found using the method introduced in section 3. 

We also apply our method to find the covariant gauge transformations of the 
bosonic string from its Hamiltonian constraints. The last section is devoted to 
comments and conclusions. 

2. Preliminary results 

2.1. Projectabifity, constraints and evolution operators 
Let us first recall two definitions. Given a function g(q ,p)  in phase space, its pull- 
back (through the Legendre transformation FL) is the function FL’(g) in velocity 
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space obtained by substituting the momenta by their Lagrangian expression 
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A function f(q, v )  in velocity space is called (FL-)projectable if it can be obtained 
as the pull-back of a certain function g( q,  p) in phase space. 

The following result [4] will be needed in the next section: if y, (p  = 1,. . . , ml) 
are a basis for the null vectors of the Hessian matrix W, then the necessary and 
sufficient condition for a function f( q ,  v) in TQ to be projectable to T Q is 

r,. f = o  (CL = 1, .  .. ,m,) (2.2) 
where r, := y p a / a v .  The basis y, can be taken as [2] 

y, := FL' (%) a+; 

where 6; ( p  = 1,. . . , ml) are a complete set of independent primary Hamiltonian 
constraints. 

The timederivative operator in Lagrangian formalism is 
d a a a  
d t  aq av at 
- = u - + a - + -  

with the acceleration a as an independent variable. 
equations can be written [L](,,q,,) = 0, where we have defined 

Then the Euler-Lagrange 

a L  dp 
aq dt 

[L] .- - - - = a -  aW .- 

. The primary Lagrangian constraints arising from it are with a =  - -U- a L  azL 
aq aqav 

(2.6) I x ,  := a.-/,. 

It is convenient in what follows to consider an evolution operator IC which takes 
a function g(q,p; t )  in phase space and gives its timederivative ( IC.g) (q ,v ; t )  in 
velocity space 

l i . g : =  u.FL' (2) + E. FL' (g) + FL' (g) . (2.7) 

This operator was introduced in [2]. It establishes interesting connections between 
Hamiltonian and Lagrangian formalisms. mr instance, all the Lagrangian constraints 
are obtained by applying it to the Hamiltonian constraints [SI; in particular, for the 
primary constraints, 

On the other hand the geometric formulation of It- allows us to write the Euler- 
Lagrange equations in an intrinsic way [6]. 

(2.8) x ; =  I < . + , .  U 

The operator IC can be given several interesting expressions. Now we shall use 

(2.9) 

whose proof is direct using the chain rule. 
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22. Gauge lransfonnations 

Here we quote some results from [3]. 'lb be precise, we call dynamic symmetry 
transformations those transformations which map solutions of the equations of motion 
into solutions, either in Lagrangian or in Hamiltonian formalism. 

The evolution operator I< allows us to write, in a very compact form, the 
necessary and sufficient condition for a function GH(q,p;t) to generate, through 
Poisson bracket 

X Grcicia and J M Potu 

U := {f, GH) (2.10) 

an infinitesimal dynamic symmetry transformation in Hamiltonian formalism. This 
condition ist 

I<.G, G 0 (211) 
vJ 

where V, is the surface defined by all the Lagrangian constraints in velocity space. 
Equivalently, G, is a first class function and satisfies 

(PFC,G,) I PFC (2.126) 
M I  

where M, is the surface defined by all the Hamiltonian constraints in phase space 
and PFC stands for any primary first class Hamiltonian constraint. 

More particularly, we call gauge transformation a dynamic symmetry transfor- 
mation which depends on arbitrary functions of time. The general form for the 
(infinitesimal) generators of Hamiltonian gauge transformations can be taken as 

(2.13) 

where 
Then, to find an effective gauge generator, the characterization (2.11) or (2.12) of 

G, as a dynamic symmetry transformation splits yielding the following constructive 
algorithm, where strong equalities have been changed to normal equalities [3]: 

is a kth primitive of an arbitrary function of time E. 

It is noticed, therefore, that though there may be second class constraints, the 
generators of Hamiltonian gauge transformations are built up of first class constraints, 
and, according to (2.14a), are 'headed' by a primary constraint. 

t f $ 0  means f = 0 on M (Dirac's weak equality). f 

equality). 

0 means f 2 0 and df 1 0 (Dirac's strong 
M M M 
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Other authors have considered similar generators of the form (2.13) when there 
are no second class constraints [7-91; they have used the derivatives of c rather 
than its primitives, and have arrived to a restricted form of (2.14). There k also 
an approach where the Lagrange’s multipliers of the constraints are considered as 
dynamic variables [lo]. A functional approach, more general, is also possible; see for 
instance [ll, 121. 

The question arises as to the existence of a basis of primary first class Hamiltonian 
constraints such that the preceding algorithm can be -carried out. Conceming ths ,  
a theorem has been recently proven [13] which, under some additional regularity 
conditions (namely, the constancy of the rank of Poisson brackets among constraints 
and the non-appearance of ineffective constraints), establishes the existence of a 
complete set of independent Hamiltonian gauge generators of the form above. Its 
number, therefore, equals the number of (final) first class primary constraints. On 
the other hand, their pull-back constitutes a complete set of Lagrangian gauge 
transformations. 

3. Noether‘s hmsfomations 

3.1. Construction of Noether’s transformations 

We consider an infinitesimal transformation 6 4 ( 4 , v ; t )  in velocity space TQ, with a 
possible functional dependence on arbitrary functions of time. When 6 L  is a total 
derivative (i.e., the action is invariant up to boundary terms), Noether‘s theorem 
guarantees that 6 4  maps solutions into solutions. Such a 6q is called a Noether 
transformation, and a conserved quantity arises from it [14-191. Some recent papers 
dealing with geometric aspects of Noether’s theorem are [20,21]. So let us consider 

d F  
dt  

6 L  = -. 

This can be equivalently written as 

with the conserved quantity G = ( a L / a v ) 6 4 -  F. 
Since the acceleration a appears linearly in (3.2), its coefficient must vanish [22] 

aG 
BV 

- w .  6 q +  - = 0. (3.3) 

By contraction with the y, this implies r,, . G = 0 for p = 1 , .  . . , m,. We conclude 
from (2.2) that G is a projectable function 

G = FL’(G,)  .. (3.4) 

for a certain function G H ( q , p ; t )  in phase space, determined up to primary 
Hamiltonian constraints. Then the relation (3.3) also reads 
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Therefore the term in parentheses is a null vector of W .  So, using the basis (2.3). 
there exist uniquely defined functions r ” ( q ,  u;1)  (P  = 1,. . . , n,) such that 

X Grricia and J M Pons 

which can also be written more symmetrically as 

6q = FL*{q,GH) + +“‘L’{q,+:). 

Introducing (3.5) into (3.2), we obtain 

= o  dFL‘ ( GH) 

which, using expression (2.9), definition (2.5) and the definition of the primary 
Lagrangian constraints (2.6), becomes 

I<- . G, + rP xh = 0. (3.7) 

Then, if we define V, as the primary Lagrangian constraint surface, (3.7) can be 
written without any reference to the functions r” as 

I<- . G, =- 0. (3.8) v, 

Thus, starting from a Noether transformation (3.2), we have obtained a neat 
characterisation (3.8) of a function GH(q,p;l) which carries all the information of 
the Noether transformation. Notice that addition of primary Hamiltonian constraints 
to G, does not modify (3.8). 

Conversely, we can reconstruct 6 q  from (3.8), in order to satisfy (3.2), as follows. 
First the functions r” are determined in order to satisfy (3.7). Indeed, they are 
determined up to certain combinations of primary Lagrangian constraints; additional 
underdetermination appears when the primary Lagrangian constraints xi are not 
independent. Then define 6q through (3.6). The function G is also recovered as 
G = FL*(GH). With these definitions (3.2) is automaticaly fulfilled. 

We have proven, therefore: 

Theorem. Every Lagrangian Noether infinitesimal transformation 6q(q ,  U ;  1 )  can 
be obtained through (3.6) from a function G,(q,p;l) satisfying IC . G, 0. 

Conversely, any function G , ( q , p ; t )  satisfying this relation generates in the same 
way a Lagrangian Noether transformation. 

V, 

This G, is the ‘Hamiltonian generator in the sense of (3.6)’ for 6q  which we were 
looking for. Notice, however, that such G, is not necessarily a Hamiltonian gauge 
generator, since in general it does not satisfy (2.11). 

For the sake of completeness we notice that the transformations of the momenta- 
as functions p = a L / a v - c a n  be shown to be 

66 = FL’{p, GH} + rP FL’{p,+:} - [L]86q/av  (3.9) 

in full accordance with (3.6) when the equations of motion are taken into account. 
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3.2. Bqecfabilify of Noerher's Wamfomnafions 

Now we consider a given function G, satisfying (3.8). live different cases can appear: 
(1) The functions rw determined by (3.7) are efojectable: r p  = FL*(rL). 

Equivalently, 6 q  is projectable. Then, if we redefine G, := G, + rfiq4;, equation 
(3.8) becomes 

_-  K . ex = 0. 

This is the case studied in [23]. The infinitesimal transformation reads 

6q = F L * { q , G , } .  

Now EH is also a generator of infinitesimal dynamic symmetly transformations in 

(2) The functions r p  determined by (3.7) are not projectable. This is a new 
case not considered before. Now we have a Noether transformation which is not the 
pull-back of a Hamiltonian symmetry transformation. In the next section we present 
an example of this kind of transformation. 

It is worth noticing that our characterization (3.7) can be weakened by substituting 
11u1111.a.1 cqud.IILIci3 ,U, Ulldt,.J 3LIullg C q U , L L ' C 3 .  "U, l W U l l J  ,,",U "1 L l L O  lll"lG gG,LG"a.l 

situation after changing normal equalities to strong equalities in equations as (3.6). 
(3.1) or (3.2). 

3.3. Lagrangian gauge fransfomnafions 

Finally, let us consider the particular case of Noether gauge transformations. If a 
'generator' G, of the form (2.iT) is proposed, then condition (3.8) can be anaiysed 
to obtain a recursive algorithm in the Same way that (2.11) leads to (2.14). We have 

iiamiiioi,ian forma;ijrii, i n e  ii $diisfreS (2,iij. 

",...",:.:-" 4A- n:-"-.,. "...̂ Î ^̂ .."a:.:̂ " n..- -^^..I*^ L-1.4 :.. .LÎ  - ^ * ~  "^""-I 

K .  G ,  = s e H +  CJ-k)(~c.~; +FL*(G~+')) 

imp!& th.e repa?nive r&&ifi,nn 

k>U 

&itr.rin..s nf 

FL*(@,) 2 0  (3.1Oa) 

FL*(G;+~) - I C .  G;. (3.1Ob) 

Thh also shows that G, h made up of Hamiltonian constraints. See also [24! for 
another mnstruction of Lagrangian gauge transformations, in which the null vectors 
ys play a role similar to that in this paper. 

V, 

VI 

4. 
counterpart 

Here we discuss in detail a simple model which has no Hamiltonian gauge generators 
but exhibits, at the Lagrangian level, Noether gauge transformationst. 

t A more phpical example exhibiting similar features is provided by the s c a n d a d e r  Lagrangian dsnibing 
a relatinslie particle with N N B I U E .  

An example of a Lagrangian gauge transformation without a Hamiltonian 
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We start with the singular Lagrangian 

L = - ' r i . ( Z + P $ ) .  m (4.1) 

Configuration space is described by the scalar coordinates a and p, assumed to take 
non-zero values, and the vector coordinates z and v, belonging to a vector space with 
an indefinite scalar product (Minkowski space, for instance). 

The Hamiltonian analysis of this Lagrangian leads to the primary constraints 

p , - o  p o " O  

which are first class. The Hamiltonian can be taken as 

H = - a ~ ,  * P ,  - P P ,  . Y. 
Stability of the primary mnstraints gives 

P, = { p , , H }  = p ; p ,  =: GI P o =  { p p , H )  = P , ' Y  =:Gz 

where GI and GZ are the secondary constraints. Obsewe that 

{GI,G2} = - P 2  

Stability of the secondary constraints gives 

d i = { G i , W = @ ~ :  d z = { G z , H } = - a ~ Z  

which lead to the tertiary constraint 

2 G3 := P ,  . 

The algorithm ends at this stage. Due to the constraint G3, all five constraints of 
the model are finally first class. 

Notice that the rank of the matrix of Poisson brackets among the constraints is 
not constant. Therefore the existence theorem for Hamiltonian gauge transformations 
of [13] cannot be applied. In fact we are going to show that no Hamiltonian gauge 
generators exist in this case. Therefore, the hypothesis in [13] cannot be removed 
from the assumptions of that existence theorem. 

Let us look for a generator of the form (213). The more general choice for G, 
is 

GU = f P ,  + g p p  

with f and g functions to be determined with the only restriction that they Cannot be 
constraints (otherwise, G, would be ineffective, G, E 0). Then (2.14b) for k = 1 

leads to 
MI 

GI = - f G l -  StLZ + f ' P a  + g ' p p  
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with f’ and g’ functions to be determined. Now condition (2.14~) imposes 

af 
aa 
as 
a0 

-=  - = constraint a f  constraint aa 
-=  - = constraint. constraint am 

Next we can construct 

G,=-{G, ,N}+PFC 

( f P - s a ) l l 3 -  (aIf,1111+PIf.32}+f’)$1 
- ( ~ t g , ~ ” + a { g , $ Z } + g ‘ ) 1 1 2 + f ’ ‘ P ~  +g’’pa 

and condition (2 .14~)  leads to 

which implies that g and f are constraints. Then the generator GH becomes 
ineffective and does not generate any transformation of the solutions. 

However, this model admits-necessarily non-projectable-Noether gauge trans- 
formations, which can be obtained from the results of section 3. Let us look, for 
instance, for a Noether transformation ‘generated‘ by a combination of all but the 
primaly constraints: 

G?H = f$l + g$2 + h $ 3 .  (44 

Then we compute, using (2.8) 

I C .  GH = (li . f )  X I  + (Ti g )  x 2  + (IC h - FL’(ag - of)) x3 

where x, = FL’($,) are the Lagrangian constraints. Therefore li . G, 2 0 is 

equivalent to 
v, 

I ( .  h = FL’(ag - p f ). 

It is just a matter of using a function h such that IC. h is projectable. In this case, this 
means that Ji . h does not depend on & nor 8; in other words, h is independent of 
a and 0. Then f and g are in a simple relation, and a Noether transformation (3.6) 
is obtained with T’ = -1; . f and r2 = -A- . g .  More particularly, two independent 
gauge transformations can be obtained from the following ‘generators’, which contain 
the arbitrary functions of time 6 ,  and e2: 

(i) G, = - ( i l ( t ) /@)$,  + ~ , ( t ) &  The corresponding Noether transformation 
L 

e ,  
aa 6 y = - y  60 = 0. 
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(ii) G, = ( i2( t ) /a)Q2 + e2(1 )Q3 .  Now the transformation is 

6y = 0 6 p  = - ( g 2 / a ) ' .  

Both transformations fulfil (3.2) with the corresponding G = FL*(G,). 

h = 0, f = - a ~ ( t )  and g = - p e ( t ) .  Then 
Notice that tha simplest form of a gauge transformation is obtained by chosing 

GH = 4 t ) H  = - ~ ( a Q l +  PQ2) 

which satisfies 

A" GH + (cQ) X I  + (E@) ~2 = 0. 
The corresponding Noether transformation is 

6 r = c Z  6 a = ( ~ Q )  6 y = e y  a @ = ( & .  
Indeed, it can be proven in general that if the Hamiltonian H is a secondary constraint 
then G, = ~ ( 1 ) f f  'generates in the Sense of (3.6)' a Noether transformation. 

We have shown therefore that this model exhibits non-trivial Lagrangian Noether 
gauge transformations, whereas no Hamiltonian gauge generators exist. 

5. Example: the bosonic string 

The Lagrangian density of the bosonic string is [25,26] 

where g = gwgll-g&. Using its Hamiltonian constraints and the algorithm described 
in section 2, one can find a Hamiltonian gauge generator G, which yields its canonical 
gauge transformations [23]. But these tranformations, when read in Lagrangian 
formalism, do not have the well known covariant form 

6 x @  = e-a,xfi (5. la) 

6gop = Ag,p + E7a7gop + amE'gyp + a,e'g,, (5.lb) 

which is not projectable. This transformation can be obtained from the Hamiltonian 
transformation through a change of gauge parameters [23]. 

The procedure we have introduced in this paper can be applied to obtain directly 
the covariant gauge transformations from the Hamiltonian constraints, as we are 
going to sketch. 

The Hamiltonian constraints are: the primary constraints, the momenta nog 
of g,,, which are equivalent to 
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and the secondary constraints, which can be written as 

H = i ( p 2  + 2'') T = p . 2'. 

All them are related by dw = 0, dH = H, and dT = T. The Hamiltonian density 
is also a secondary constraint 

6 901 'H = --H + -T 
911 911 

From the primary Hamiltonian constraints we obtain the kernel ymp(o,u' )  of 
W(u,u' ) ,  which is given by the rmo(u) = a/ag,,; equivalently we can use 

Finally, the primary Lagrangian constraints are the I C .  rL1o(u), which are not 
independent. We will use instead the following constraints: IC.4H(u) = FL'(H(u)) 
and I C .  +T(u)  = FL'(T(u)), whereas I( . +w is identically zero. 

As in the previous example, we can look for a 'generator' G, made up of 
secondary constraints with arbitrary parameters. Let us consider the most general 
C,, which can be taken as G, = Jdu(e"'H + €IT). It satisfies I C .  G, = 
- J d u  ( T ~ F L * (  H) + T,FL'(T)) = 0, which determines 

V, 

The function T~ corresponding to the vanishing Lagrangian constraint IC . +w 
remains arbitrary, and we can take advantage of this to introduce a new gauge 
parameter (arbitrary function) A. 

Once vW is fixed, we use (3.6) to determine the gauge transformation. It turns 
out that its most simple form is achieved when we take 

which yields (5.1). 
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6. Conclusions 

In this paper we have obtained a neat characterization for Noether transformations 
(of Lagrangian formalism): they are ‘generated’ by a function G H ( q , p ; t )  (of 
Hamiltonian formalism) which satisfies K . G, 1 0. This result is completely 
general: it includes both the cases of gauge and rigid transformations as well as 
the projectable and the non-projectable transformations. Owing to the dynamic 
mntents of the operator I<, G, is a constant of motion. The case. of gauge 
transformations corresponds to a G, made up by arbitrary functions of time and 
Hamiltonian constraints. 

The case of non-projectable Noether transformations is especially relevant because 
they cannot have an associated transformation in phase space. The example in 
section 4 shows that there are cases for which no Hamiltonian gauge generators exist, 
even though the dynamics contains arbitrary functions. This fact is compatible with 
the existence of Noether gauge transformations in velocity space. The same example 
proves that the hypothesis of constant rank of the Poisson bracket among constraints 
cannot be removed from the theorem of existence of a complete set of independent 
gauge transformations in phase space [13]. On the other hand, as shown in the second 
example, our procedure allows us to obtain the covariant gauge transformations even 
when this is not possible within the Hamiltonian framework. 

X Grricia and J M Pons 
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